GaGe is a worldwide industry leader in high speed data acquisition solutions featuring a portfolio of the highest performance digitizers, PC oscilloscope software, powerful SDKs for custom application development, and turnkey integrated PC-based measurement systems.

APPLICATIONS
- RADAR Design and Test
- Signals Intelligence (SIGINT)
- Ultrasonic Non-Destructive Testing
- LIDAR Systems
- Communications
- Spectroscopy
- High-Performance Imaging
- Time of Flight
- Life Sciences
- Particle Physics

FEATURES
- 2 or 1 Digitizing Input Channels with 8-Bit Vertical A/D Resolution
- 2 GS/s, 1 GS/s, or 500 MS/s Maximum Sampling Rates
- 20 Software Selectable A/D Sampling Rates from 2 kS/s to 2 GS/s
- 500 MHz Analog Input Bandwidth
- 2 GS (2 GB) Onboard Memory Standard, Expandable up to 16 GS (16 GB)
- Dual Port Memory with Sustained PCIe Data Streaming at 2 GB/s
- Full-Featured Front-End with AC/DC Coupling and 50 Ω Inputs
- Software Control of Input Voltage Ranges and Coupling
- Ease of Integration with External or Reference Clock In & Clock Out
- External Trigger In & Trigger Out with Advanced Triggering Operations
- Synchronized Multi-Card Systems up to 8 Cards for 16 Channels
- Full-Height Full-Length PCI Express (PCIe) Generation 2.0 x8 Card
- Programming-Free Operation with GaGeScope PC Oscilloscope Software
- Software Development Kits Available for C/C#, LabVIEW and MATLAB
- Windows 10/8/7 and Linux Operating Systems Supported
Cobra Express CompuScope Simplified Block Diagram

MAIN SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model #</th>
<th>CSE21G8</th>
<th>CSE22G8</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Input Channels</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Vertical A/D Resolution</td>
<td>8-bit</td>
<td>8-bit</td>
</tr>
<tr>
<td>Max. Rate per Channel</td>
<td>1-CH @ 1 GS/s 2-CH @ 500 MS/s</td>
<td>1-CH @ 2 GS/s 2-CH @ 1 GS/s</td>
</tr>
</tbody>
</table>

DYNAMIC PARAMETER PERFORMANCE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CSE21G8</th>
<th>CSE22G8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENOB</td>
<td>7.4 Bits</td>
<td>7.4 Bits</td>
</tr>
<tr>
<td>SNR</td>
<td>46 dB</td>
<td>46 dB</td>
</tr>
<tr>
<td>THD</td>
<td>-60 dB</td>
<td>-60 dB</td>
</tr>
<tr>
<td>SINAD</td>
<td>46 dB</td>
<td>46 dB</td>
</tr>
<tr>
<td>SFDR</td>
<td>60 dB</td>
<td>60 dB</td>
</tr>
</tbody>
</table>

Dynamic parameter measurements are done by acquiring a high purity 10 MHz sine wave with amplitude of 95% of the input range sampling at 1 GS/s. These measurements were taken on the ±500 mV input range using 50 Ω termination and DC coupling and with applied anti-aliasing filter. Dynamic parameter calculations are done from a 16 kiloSample Fourier Spectrum after applying a 7-term Blackman Harris Windowing Function to the time-domain waveform.

A/D SAMPLING

| Rates per Channel, (software selectable) | 2 GS/s, 1 GS/s, 500 MS/s, 250 MS/s, 125 MS/s, 100 MS/s, 50 MS/s, 25 MS/s, 10 MS/s, 5 MS/s, 2 MS/s, 1 MS/s, 500 ks/s, 200 ks/s, 100 ks/s, 50 ks/s, 20 ks/s, 10 ks/s, 5 ks/s, 2 ks/s |
| Rate Accuracy | ±1 part-per-million (0° to 50° C ambient) |

ACQUISITION MEMORY

Standard Size	2 GS (2 GB)
Optional Sizes	16 GS (16 GB)
Architecture	Dual Port
Data Streaming	Yes
ANALOG INPUT CHANNELS
- **Connectors**: SMA
- **Impedance**: 50 Ω
- **Coupling**: DC or AC (software selectable)
- **Analog Bandwidth**:
 - DC (50 Ω): DC to 500 MHz
 - AC (50 Ω): 20 kHz to 500 MHz
- **Voltage Ranges**: ±50 mV, ±100 mV, ±200 mV, ±500 mV, ±1 V, ±2 V, ±5 V (software selectable)
- **Flatness**: Within ±0.5 dB of ideal response to 100 MHz.
- **DC Accuracy**: ±1% on all input ranges
- **DC User Offset**: ±100 % on all input ranges, except ±5V that is ±20 %
- **Absolute Max. Input**: 6 V RMS on all input ranges, except ±5V that is 8.5V RMS

LOW-PASS FILTER
- **Type**: 3-pole, 1 per Channel
- **Cut-Off Frequency**: 200 MHz
- **Operation**: Individually Software Selectable

TRIGGERING
- **Engines**: 2 per Channel, 1 for External Trigger
- **Source**: Any Input Channel, External Trigger or Software
- **Input Combination**: All Combinations of Sources Logically OR'ed
- **Slope**: Positive or Negative (software selectable)
- **Sensitivity**: ±5% of Full Scale Input Range of Trigger Source. This implies that signal amplitude must be at least 5% of full scale to cause a trigger to occur. Smaller signals are rejected as noise.
- **Accuracy**: Internal: ±2% of Full Scale
 Externally: ±10% of Full Scale
- **Post-Trigger Data**: 64 points minimum. Can be defined with 64 point resolution.

EXTERNAL TRIGGER
- **Connector**: SMA
- **Impedance**: 2k Ω or 50 Ω
- **Coupling**: AC or DC
- **Bandwidth**: >300 MHz
- **Voltage Range**: ±1 V, ±5 V (software selectable)
- **Amplitude**: Absolute Maximum 6 V RMS

CLOCK IN
- **Connector**: SMA
- **Signal Level**: Minimum 200 mV RMS, Maximum 500 mV RMS
- **Impedance**: 50 Ω
- **Coupling**: AC
- **Duty Cycle**: 50% ±5%
- **Input Modes**: External Clock or 10 MHz Reference Clock
- **External Clock**: Minimum 200 MHz to Maximum 1 GHz
- **Mode Rates**: External Reference Clock Mode Rate:
 - 10 MHz ±50 ppm; the external reference time base is used to synchronize the internal sampling clock.

CLOCK OUT
- **Connector**: SMA
- **Signal Level**: ±300 mV
- **Impedance**: 50 Ω
- **Output Modes**: Maximum Sampling Clock Frequency or 10 MHz Reference Clock
- **Max. Frequency**: 1 GHz
- **Min. Frequency**: 10 MHz from External Clock, 200 MHz from Internal Clock

MULTIPLE RECORD
- **Pre-Trigger Data**: Up to almost full on-board memory
- **Record Length**: 64 points minimum. Can be defined with 64 point resolution.

TIME-STAMPING
- **Timing Resolution**: One Sample Clock Cycle
- **Counter Turnover**: >24 Hours Continuous

MULTI-CARD SYSTEMS
- **Master/Slave Mode**: Provides synchronized triggering and sampling on all channels for all cards to create larger multi-channel systems.
- **Independent Mode**: Each card operates independently within the system.
- **Number of Cards**: 2 to 8 Cards for up to 16 Channels Total

DIMENSIONS
- **Size**: Single Slot, Full Height, Full Length

POWER CONSUMPTION
- **Power**: 33.8 Watts (typical)

PC SYSTEM REQUIREMENTS
- **PCI Express (PCIe) Slot**: 1 Free Full-Height Full-Length PCIe Gen1, Gen2 or Gen3, x8 or x16 Slot
- **Operating System**: Windows 10/8/7 (32-bit/64-bit), Linux – Requires SDK for C/C#
ORDERING INFORMATION

Hardware

<table>
<thead>
<tr>
<th>Model Number</th>
<th>A/D Resolution</th>
<th># of Channels</th>
<th>Max. Sampling Rate per Channel</th>
<th>Memory Size</th>
<th>Order Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE21G8</td>
<td>8-bit</td>
<td>2</td>
<td>1-CH: 1 GS/s 2-CH: 500 MS/s</td>
<td>2 GS (2 GB)</td>
<td>CBE-021-000</td>
</tr>
<tr>
<td>CSE22G8</td>
<td>8-bit</td>
<td>2</td>
<td>1-CH: 2 GS/s 2-CH: 1 GS/s</td>
<td>2 GS (2 GB)</td>
<td>CBE-022-000</td>
</tr>
</tbody>
</table>

Memory Upgrades

- Memory Upgrade: 2 GS (2 GB) to 4 GS (4 GB) | MEM-181-101
- Memory Upgrade: 2 GS (2 GB) to 8 GS (8 GB) | MEM-181-103
- Memory Upgrade: 2 GS (2 GB) to 16 GS (16 GB) | MEM-181-105

Cable Accessories

- Set 1 Cable SMA to BNC | ACC-001-031
- Set 4 Cable SMA to BNC | ACC-001-033

Master/Slave Upgrades

- Master Multi-Card Upgrade | CBE-181-012
- Slave Multi-Card Upgrade | CBE-181-013

eXpert FPGA Firmware Options

- eXpert PCIe Data Streaming | STR-181-000
- eXpert Signal Averaging | 250-181-001

GaGeScope Software

- GaGeScope: Lite Edition | Included
- GaGeScope: Standard Edition | 300-100-351
- GaGeScope: Professional Edition | 300-100-354

Software Development Kits (SDKs)

- GaGe SDK Pack (includes C/C#, MATLAB, LabVIEW SDKs) | 200-113-000
- CompuScope SDK for C/C# | 200-200-101
- CompuScope SDK for MATLAB | 200-200-102
- CompuScope SDK for LabVIEW | 200-200-103

WARRANTY

Standard two years parts and labor.

Unless otherwise specified, all dynamic performance specs have been qualified on engineering boards. All specifications subject to change without notice.

Data Sheet Revision 0 – 09/27/2017
GaGe is a product brand of DynamicSignals LLC, an ISO 9001:2008 Certified Company

Copyright © 2017 DynamicSignals LLC. All rights reserved.